Short Course

State Space Models, Generalized Dynamic Systems and Sequential Monte Carlo Methods, and

their applications

in Engineering, Bioinformatics and Finance

Rong Chen Rutgers University Peking University Part Three: Advanced Sequential Monte Carlo

- 3.1 Mixture Kalman Filter
- 3.1.1 Conditional Dynamic Linear Models
- 3.1.2 Mixture Kalman Filters
- 3.1.3 Partial Conditional Dynamic Linear Models
- 3.1.4 Extend Mixture Kalman Filters
- 3.1.5 Future Directions
- 3.2 Constrained SMC
- 3.3 Parametrer Estimation in SMC

3.1.1 Conditional Dynamic Linear Models

Indicator Λ_t : (unobserved) If $\Lambda_t = \lambda$ then

$$x_t = H_{\lambda} x_{t-1} + W_{\lambda} w_t$$
$$y_t = G_{\lambda} x_t + V_{\lambda} v_t$$

where $w_t \sim N(0, I)$ and $v_t \sim N(0, I)$ and independent.

Given the trajectory of the indicator $\{\Lambda_1, \ldots, \Lambda_t\}$, the system is linear and Gaussian.

Example: Tracking a target in clutter

Introducing an indicator I_t taking values in $\{0, 1, \ldots, m_t\}$. $I_t = 0$ true signal missing. $I_t = i$, then $y_t^{(i)}$ is the true signal.

$$\begin{aligned} x_t &= H x_{t-1} + W w_t \\ y_t^{(i)} &= G x_t + V v_t & \text{if} \quad I_t = i \\ y_t^{(j)} &\sim \text{Unif}(\Delta) & \text{if} \quad I_t \neq j \end{aligned}$$

and

$$P(I_t = 0) = p_d$$
 and $P(I_t = i) = (1 - p_d)/m_t$

Given the trajectory of the indicator $\{I_1, \ldots, I_t\}$, the system is linear and Gaussian.

Example: Tracking a target with non-Gaussian innovations.

$$x_t = Hx_{t-1} + Ww_t$$
$$y_t = Gx_t + Vv_t$$

where $w_t \sim t_{k_1}$, $v_t \sim t_{k_2}$. Note that $t_k = N(0, 1) / \sqrt{\chi_k^2 / k}$

Introducing indicators $\Lambda_t = (\Lambda_{t1}, \Lambda_{t2})$.

$$x_{t} = Hx_{t-1} + \frac{\sqrt{k_{1}}}{\sqrt{\lambda_{1}}}Ww_{t} \quad \text{if} \quad \Lambda_{t1} = \lambda_{1}$$
$$y_{t} = Gx_{t} + \frac{\sqrt{k_{2}}}{\sqrt{\lambda_{2}}}Vv_{t} \quad \text{if} \quad \Lambda_{t2} = \lambda_{2}$$

with $v_t \sim N(0, I)$, $w_t \sim N(0, I)$ and $\Lambda_{t1} \sim \chi^2_{k_1}$, $\Lambda_{t2} \sim \chi^2_{k_2}$. Given the trajectory of the indicator $\{\Lambda_1, \ldots, \Lambda_t\}$, the system is linear and Gaussian. Example: Tracking a target with random (Gaussian) acceleration plus maneuvering

$$x_t = Hx_{t-1} + Fs_{I_t}u_t + Ww_t$$
$$y_t = Gx_t + Vv_t$$

where u_t, w_t and v_t are all N(0, I) independent.

I_t maneuvering status:

 $I_t = 0$, no maneuvering, $s_0 = 0$

 $I_t = 1$, slow maneuvering, $s_1 I_t = 2$, fast maneuvering, s_2 With known transition matrix $P = P(I_{t+1} | I_t)$.

<u>3.1.2 Mixture Kalman Filter:</u>

Let
$$\boldsymbol{y}_t = (y_1, \dots, y_t)$$
 and $\boldsymbol{\Lambda}_t = (\Lambda_1, \dots, \Lambda_t)$.
Note that

$$p(x_t | \boldsymbol{y}_t) = \int p(x_t | \boldsymbol{\Lambda}_t, \boldsymbol{y}_t) dF(\boldsymbol{\Lambda}_t | \boldsymbol{y}_t)$$

and

$$p(x_t \mid \mathbf{\Lambda}_t, \mathbf{y}_t) \sim N(\mu_t(\mathbf{\Lambda}_t), \sigma_t^2(\mathbf{\Lambda}_t))$$

where

$$KF_t(\mathbf{\Lambda}_t) \equiv (\mu_t(\mathbf{\Lambda}_t), \sigma_t^2(\mathbf{\Lambda}_t))$$

can be obtained from Kalman filter.

 $p(x_t \mid y_1, \dots, y_t)$ is a mixture Gaussian distribution.

(Sequential) Monte Carlo Filter: a discrete sample with weight

$$\{(x_t^{(1)}, w_t^{(1)}), \dots, (x_t^{(m)}, w_t^{(m)})\} \Longrightarrow p(x_t \mid y_1, \dots, y_t)$$

<u>Mixture Kalman Filter:</u> a discrete sample with weight

$$\{(\boldsymbol{\lambda}_t^{(1)}, w_t^{(1)}), \dots, (\boldsymbol{\lambda}_t^{(m)}, w_t^{(m)})\} \Longrightarrow p(\boldsymbol{\Lambda} \mid y_1, \dots, y_t)$$

and a random mixture of Normal distributions

$$\sum_{i=1}^m w_t^{(i)} N(\mu_t(\boldsymbol{\lambda}_t^{(i)}), \sigma_t^2(\boldsymbol{\lambda}_t^{(i)})) \Longrightarrow p(x_t \mid y_1, \dots, y_t).$$

Hence

$$E(f(x_t) \mid y_1, \dots, y_t) \approx \sum_{i=1}^m w_t^{(i)} \int f(x)\phi(x; \mu_t(\boldsymbol{\lambda}_t^{(i)}), \sigma_t^2(\boldsymbol{\lambda}_t^{(i)})) dx$$

Benefit: improved efficiency

$$Var[f(x_t) \mid \boldsymbol{y}_t] \geq Var[E(f(x_t) \mid \boldsymbol{\Lambda}_t, \boldsymbol{y}_t) \mid \boldsymbol{y}_t]$$

Example: $X \sim N(\Lambda, \sigma_1^2)$ and $\Lambda \sim N(0, \sigma_2^2)$. Estimate $\mu = E(X)$ (1) directly sample from $X \sim N(0, \sigma_1^2 + \sigma_2^2)$,

$$Var(\hat{\mu}) = Var\left(\frac{\sum_{i=1}^{m} X_i}{m}\right) = \frac{\sigma_1^2 + \sigma_2^2}{m}$$

(2) sample $\Lambda \sim N(0, \sigma_2^2)$.

$$\hat{\mu} = \frac{\sum_{i=1}^{m} E(X \mid \Lambda_i)}{m} = \frac{\sum_{i=1}^{m} \Lambda_i}{m}$$
$$Var(\hat{\mu}) = Var\left(\frac{\sum_{i=1}^{m} \Lambda_i}{m}\right) = \frac{\sigma_2^2}{m}$$

Algorithm:

At time t, we have a sample $(\lambda_t^{(i)}, KF_t^{(i)}, w_t^{(i)})$ For t + 1,

- (1): generate $\lambda_{t+1}^{(i)}$ from a trial distribution $g(\Lambda_{t+1} \mid \boldsymbol{\lambda}_t^{(i)}, KF_t^{(i)}, y_{t+1})$
- (2): run one step Kalman filter conditioning on $(\lambda_{t+1}^{(i)}, KF_t^{(i)}, y_{t+1})$ and obtain $KF_{t+1}^{(i)}$.
- (3): calculate the incremental weight

$$u_{t+1}^{(i)} = \frac{p(\boldsymbol{\lambda}_t^{(i)}, \boldsymbol{\lambda}_{t+1}^{(i)} \mid \boldsymbol{y}_{t+1})}{p(\boldsymbol{\lambda}_t^{(i)} \mid \boldsymbol{y}_t)g(\boldsymbol{\lambda}_{t+1} \mid \boldsymbol{\lambda}_t^{(i)}, KF_t^{(i)}, y_{t+1})}$$

and the new weight $w_{t+1}^{(i)} = w_t^{(i)} u_{t+1}^{(i)}$.

When Λ_t is a discrete r.v. on a finite set, then

- (0): For each j = 1, ..., J, run a Kalman filter to obtain $u_j^{(i)} = p(y_{t+1} \mid \Lambda_{t+1} = j, KF_t^{(i)})p(\Lambda_{t+1} = j \mid \boldsymbol{\lambda}_t^{(i)})$
- (1): Sample a $\lambda_{t+1}^{(i)}$ from the set $\{1, \ldots, J\}$ with probability proportional to $u_j^{(i)}$.

i.e. sample a λ from $p(\Lambda_{t+1} \mid \boldsymbol{\lambda}_t, KF_t, y_{t+1})$

(2): Let
$$KF_{t+1}^{(i)}$$
 be the one with $\lambda_{t+1}^{(i)}$.

(3): The new weight is

$$w_{t+1}^{(i)} \propto w_t^{(i)} p(y_{t+1} \mid \boldsymbol{\lambda}_t^{(i)}, KF_t^{(i)}) \propto w_t^{(i)} \sum_{j=1}^J u_j^{(i)}$$

When Λ_t is a continuous r.v., a simple (but not optimum) algorithm is

- (1): Sample a $\lambda_{t+1}^{(i)}$ from $p(\Lambda_{t+1} \mid \Lambda_t = \lambda_t^{(i)})$
- (2): Run one step Kalman filter conditioning on $(\lambda_{t+1}^{(i)}, KF_t^{(i)}, y_{t+1})$ and obtain $KF_{t+1}^{(i)}$
- (3) : The new weight is

$$w_{t+1}^{(i)} = w_t^{(i)} p(y_{t+1} \mid \lambda_{t+1}^{(i)}, KF_t^{(i)})$$

Tracking in clutter:

Example: Tracking a target with non-Gaussian innovations

State Equation:

$$\begin{pmatrix} x_t^{(1)} \\ x_t^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & T \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_{t-1}^{(1)} \\ x_{t-1}^{(2)} \end{pmatrix} + q \begin{pmatrix} T/2 \\ 1 \end{pmatrix} w_t$$

true signal

$$y_t = x_t^{(1)} + rv_t$$

where $w_t \sim t_3$ and $v_t \sim t_3$. $T = 1, q^2 = 400/3, r^2 = 1600/3.$

noise var	# chains	Particle		MKF	
		cpu time	# miss	cpu time	# miss
	20	9.49843	72	19.4277	1
	50	20.1622	20	51.6061	1
$q^2 = 16.0$	200	80.3340	7	181.751	1
$r^2 = 1600$	500	273.369	4	500.157	1
	1500	1063.36	3	2184.67	1

3.1.3 Partial CDLM

state equation: $x_t = g_t(x_{t-1}, \varepsilon_t)$ observation equation: $y_t = h_t(x_t, e_t)$

- Extract the linear and Gaussian components out, and use Kalman Filter (integrating those components out)
- Nonlinear components are dealt with standard Monte Carlo Filters
- Non-Gaussian innovations are dealt with indicators and approximations
- Nonlinear functions are dealt with 'conditional linearization'?

State: (x_t, x_t^*) . Observations: (y_t, y_t^*)

$$x_t = g_t(x_{t-1}, x_{t-1}^*, \varepsilon_t) \tag{1}$$

$$x_t^* = H_{x_t} x_{t-1}^* + W_{x_t} w_t \tag{2}$$

$$y_t = h_t(x_t, e_t) \tag{3}$$

$$y_t^* = G_{x_t} x_t^* + V_{x_t} v_t (4)$$

- x_t, y_t : nonlinear nonGaussian component
- x_t^*, y_t^* : conditional linear Gaussian component
- $H_{x_t}, G_{x_t}, W_{x_t}, V_{x_t}$: known matrices given x_t
- $w_t \sim N(0, I)$ and $v_t \sim N(0, I)$ and independent.

Given the trajectory of the NLNG components $\{x_1, \ldots x_t\}$, the system (2) (4) is linear and Gaussian.

Example: Digital Signal Extraction in Fading Channels

State Equations:
$$\begin{cases} x_t = Hx_{t-1} + w_t \\ \alpha_t = Gx_t \\ s_t \sim p(\cdot \mid s_{t-1}) \end{cases}$$

Observation equation: $y_t = \alpha_t s_t + v_t$

 \mathbf{Or}

State Equations:
$$x_t = Hx_{t-1} + w_t$$

 $s_t \sim p(\cdot \mid s_{t-1})$

Observation equation: $y_t = Gx_ts_t + v_t$

Example: 2-d target with GPS and IMU sensor.

State:

- **position** p_{1t}, p_{2t}
- speed v_{1t}, v_{2t}
- (total) acceleration a_{1t}, a_{2t}
- IMU facing θ_t
- IMU rotational speed ψ_t
- Two motion status:
 - $-M_t = 1$: (roughly) zero acceleration (constant between observations)
 - $-M_t = 2$: (roughly) constant acceleration

δ : time gap between observations

State equations: $(M_t = 1)$

$$p_{it} = p_{it-1} + v_{it-1}\delta + 0.5\delta\varepsilon_{it} \quad i = 1, 2$$

$$v_{it} = v_{it-1} + \varepsilon_{it} \quad i = 1, 2$$

$$a_{it} = \varepsilon_{it} \quad i = 1, 2$$

$$\theta_t = \theta_{t-1} + \psi_{t-1}\delta + 0.5\delta\varepsilon_t^*$$

$$\psi_t = \psi_{t-1} + \varepsilon_t^*$$

$$P(M_t = i \mid M_{t-1} = j) = p_{ij}$$

Similar for $M_t = 2$

- One can also impose constraints (maps) on the state equations.
- variance of ε_{it} depends on platform (walking or vehicle etc)

Observations:

- p_{1t}^*, p_{2t}^* : (post-processed) GPS signal
- a_{1t}^*, a_{2t}^* : acceleration in the direction of θ_t
- η_t : rotational acceleration

Observational equations:

$$p_{it}^{*} = p_{it} + e_{1t} \quad i = 1, 2$$

$$a_{1t}^{*} = \cos(\theta_{t})a_{1t} + \sin(\theta_{t})a_{2t} + w_{1t}$$

$$a_{2t}^{*} = -\sin(\theta_{t})a_{1t} + \cos(\theta_{t})a_{2t} + w_{2t}$$

$$\eta_{t} = \psi_{t} - \psi_{t-1} + w_{3t}$$

Give θ_t, ψ_t, M_t , the rest of the system is linear and Gaussian. Hence,

- θ_t, ψ_t, M_t are the NLNG stat components
- η_t is the NLNG observation component.

Extended Mixture Kalman Filter:

Let
$$y_t = (y_1, \ldots, y_t)$$
, $y_t^* = (y_1^*, \ldots, y_t^*)$ and $x_t = (x_1, \ldots, x_t)$.

Note that

$$p(x_{t}, x_{t}^{*} | \boldsymbol{y}_{t}, \boldsymbol{y}_{t}^{*}) = \int p(x_{t}, x_{t}^{*}, \boldsymbol{x}_{t-1} | \boldsymbol{y}_{t}, \boldsymbol{y}_{t}^{*}) d\boldsymbol{x}_{t-1}$$

=
$$\int p(x_{t}^{*} | \boldsymbol{x}_{t}, \boldsymbol{y}_{t}^{*}) p(x_{t} | \boldsymbol{x}_{t-1}, y_{t}, y_{t}^{*}) dF(\boldsymbol{x}_{t-1} | \boldsymbol{y}_{t-1}, \boldsymbol{y}_{t-1}^{*})$$

where

$$p(x_t^* \mid \boldsymbol{x}_t, \boldsymbol{y}_t^*) \sim N(\mu_t(\boldsymbol{x}_t), \sigma_t^2(\boldsymbol{x}_t))$$

where

$$KF_t(\boldsymbol{x}_t) \equiv (\mu_t(\boldsymbol{x}_t), \sigma_t^2(\boldsymbol{x}_t))$$

can be obtained from Kalman filter.

 $p(x_t^* \mid \boldsymbol{y}_t, \boldsymbol{y}_t^*)$ is a mixture Gaussian distribution.

Inference with EMKF

$$E(f_1(x_t) \mid \boldsymbol{y}_t, \boldsymbol{y}_t^*) \approx \sum_{i=1}^m w_t^{(i)} f_1(x_t^{(i)})$$

and

$$E(f_2(x_t^*) \mid \boldsymbol{y}_t, \boldsymbol{y}_t^*) \approx \sum_{i=1}^m w_t^{(i)} \int f_2(x^*) \phi(x^*; \mu_t(\boldsymbol{x}_t^{(i)}), \sigma_t^2(\boldsymbol{x}_t^{(i)})) dx^*$$

Specially,

$$E(x_t^* \mid \boldsymbol{y}_t, \boldsymbol{y}_t^*) \approx \sum_{i=1}^m w_t^{(i)} \mu_t(\boldsymbol{x}_t^{(i)})$$

Benefit: improved efficiency

 $Var[f_2(x_t^*) \mid \boldsymbol{y}_t, \boldsymbol{y}_t^*] \geq Var[E(f_2(x_t^*) \mid \boldsymbol{x}_t, \boldsymbol{y}_t, \boldsymbol{y}_t^* \mid \boldsymbol{y}_t, \boldsymbol{y}_t^*)]$

Algorithm:

At time t, we have a sample $(\boldsymbol{x}_t^{(i)}, KF_t^{(i)}, w_t^{(i)})$

For t + 1,

- (1): generate $x_{t+1}^{(i)}$ from a trial distribution $g(x_{t+1} \mid \boldsymbol{x}_t^{(i)}, KF_t^{(i)}, y_{t+1}, y_{t+1}^*)$
- (2): run one step Kalman filter conditioning on $(x_{t+1}^{(i)}, KF_t^{(i)}, y_{t+1}^*)$ and obtain $KF_{t+1}^{(i)}$.
- (3): calculate the incremental weight

$$u_{t+1}^{(i)} = \frac{p(\boldsymbol{x}_{t}^{(i)}, x_{t+1}^{(i)} \mid \boldsymbol{y}_{t+1}, \boldsymbol{y}_{t+1}^{*})}{p(\boldsymbol{x}_{t}^{(i)} \mid \boldsymbol{y}_{t}, \boldsymbol{y}_{t}^{*})g(x_{t+1} \mid \boldsymbol{x}_{t}^{(i)}, KF_{t}^{(i)}, y_{t+1}^{*})}$$

and the new weight $w_{t+1}^{(i)} = w_t^{(i)} u_{t+1}^{(i)}$.

Simple example:

$$x_{t,1} = x_{t-1,2} + 0.2x_{t-1,2}^2 + q_1e_{t1}$$
$$x_{t,2} = x_{t-1,2} + q_2e_{t2}$$
$$y_t = 0.5x_{t,1}x_{t,2} + rv_t$$

with e_{t1} , e_{t2} , v_t all N(0, 1)

MSE x2

Example: Digital Signal Extraction in Fading Channels

 α_t : Butterworth filter of order r = 3 i.e. ARMA(3,3) Cutoff frequency 0.1

 $s_t = \{-1, 1\}.$ **Two cases:** $v_t \sim N(0, \sigma^2)$

 $v_t \sim (1 - \alpha) N(0, \sigma_1^2) + \alpha N(0, \sigma_2^2)$

Extra indicator I_t for noise.

What we have done:

- Separate NLNG and Conditional LG components
- Nonlinear components are dealt with standard Monte Carlo Filters
- Use Kalman Filter for the conditional linear and Gaussian component.

<u>Further Improvement</u> – reduce the number of NLNG components with approximation

- Linear approximation of the nonlinear functions, as EKF.
- Mixture Gaussian approximation of the Non-Gaussian innovations, by introducing indicators
 - conditional on the indicator, innovation is Gaussian
 - -t distribution, double exponential, exponential power family, logistic, etc. and the mixture of them!